
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 6, JUNE 2022 3731

Mining Stable Quasi-Cliques on Temporal Networks
Longlong Lin , Pingpeng Yuan , Member, IEEE, Rong-Hua Li, Jifei Wang,

Ling Liu , Fellow, IEEE, and Hai Jin , Fellow, IEEE

Abstract—Real-world networks, such as phone-call networks
and social networks, are often not static but temporal. Mining
cohesive subgraphs from static graphs is a fundamental task in
network analysis and has been widely investigated in the past
decades. However, the concepts of cohesive subgraphs shift from
static to temporal graphs raise many important problems. For
instance, how to detect stable cohesive subgraphs on tempo-
ral networks such that the nodes in the subgraph are densely
and stably connected over time. To address this problem, we
resort to the conventional quasi-clique and propose a new model,
called maximal ρ-stable (δ, γ )-quasi-clique, to capture both the
cohesiveness and the stability of a subgraph. We show that the
problem of enumerating all maximal ρ-stable (δ, γ )-quasi-cliques
is NP-hard. To efficiently tackle our problem, we first devise a
novel temporal graph reduction algorithm to significantly reduce
the temporal graph without losing any maximal ρ-stable (δ, γ )-
quasi-clique. Then, on the reduced temporal graph, we propose
an effective branch and bound enumeration algorithm, named
BB&SCM, with four carefully designed pruning techniques to
accomplish the enumeration process. Finally, we conduct exten-
sive experiments on seven real-world temporal graphs, and the
results demonstrate that the temporal graph reduction algorithm
can safely reduce 98% nodes of the temporal graph (with mil-
lions of nodes and edges) and BB&SCM is at least two orders
of magnitude faster than the baseline algorithms. Moreover, we
also evaluate the effectiveness of our model against other baseline
models.

Index Terms—Quasi-clique, stable cohesive subgraph detec-
tion, temporal networks.
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I. INTRODUCTION

MANY real-world networks are often temporal networks
in nature, whose each edge exists for a certain period

of time [1]. For example, in a phone-call network [2], where
an edge (u, v, [ts, te]) indicates that the two individuals u
and v have a phone call during time interval [ts, te]. In
a face-to-face contact network [3], the connection between
two persons was made at a specific time. Mining temporal
networks is an indispensable ingredient to better understand
the potential phenomena of interactions among entities in a
fine-grained manner [4]. Thus, many traditional problems have
been extended to temporal networks, such as pattern match-
ing [5], shortest path and reachability queries [6], [7], and
minimum spanning tree search [8].

Since it is important to detect cohesive subgraphs where the
nodes are densely connected within the subgraph, many cohe-
sive subgraph models have been proposed [9]. However, all of
these models ignore the temporal dimension of the network,
thereby may fail to detect some significant temporal patterns
such as trend of cooperation, evolution of events and traf-
fic hotspots. Until very recently, some works were done on
mining temporal cohesive subgraphs [2], [10]. Despite signif-
icant success, all of them only considered the cohesiveness
but not the stability of a subgraph, thus their solutions cannot
be directly applied to detect stable cohesive subgraphs. In this
work, we move beyond the static cohesive subgraph models
and study the problem of detecting stable cohesive subgraphs
in temporal networks. The goal is to detect some subgraphs in
temporal networks such that the nodes in each subgraph are
densely and stably connected over time (a motivation example
is illustrated in Fig. 1). Detecting such subgraphs enables us
to reveal stable components in temporal graphs.

Predicting Collaboration Tendency: Scientific collaboration
networks (e.g., DBLP) model the collaboration relationships
between authors. Finding stable coauthors that frequently and
densely collaborate can help us predict their collaboration ten-
dency. For a more granular analysis of the relationship between
authors, scientists usually organize coauthorship networks as
temporal networks [2], [10]. By identifying the stable cohesive
subgraph from the above temporal coauthorship networks, we
are able to speculate that the authors in the stable cohesive
subgraph are likely to coauthor papers together again in the
near future, because they frequently coauthored papers with
each other in multiple time periods.

Team Recommendation: Online e-Sports games (e.g.,
League of Legends) are usually temporal networks [11].
Players would like to cooperate with others in different
levels. Some cooperation is frequent while others may be
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Fig. 1. Motivation example. The time intervals on edges indicate when two
nodes interact. If we ignore the time information on edges, the black (or
gray) nodes can form a cohesive subgraph. When we consider the temporal
properties of edges, the black nodes form a stable cohesive subgraph since
their interaction is concentrated and stable over time while the interaction
between gray nodes is loose and not stable enough.

occasional. Identifying the stable co-players that frequently
play the game can help users determine their cooperation lev-
els. For example, game coaches would like to choose the stable
teams to participate in the large competition (e.g., League of
Legends Championship Series) because they have frequent and
close cooperations and, thereby, are more likely to win the
competition.

To model the stable cohesive subgraph in temporal
networks, we first define the (δ, γ )-quasi-clique based on the
static cohesive subgraph model γ -quasi-clique [12]. A (δ, γ )-
quasi-clique consists of vertex set H and time interval T ,
indicating that all vertices in H densely interact with each other
during T from an average interaction intensity perspective.
Namely, the average degree of every node of H over all times-
tamps of T is at least γ times the number of nodes of H. The
(δ, γ )-quasi-clique is essentially different from γ -quasi-clique,
which incorporates the time information to enable better anal-
ysis of the temporal networks. Subsequently, we propose the
ρ-stable (δ, γ )-quasi-clique to capture the stable cohesive sub-
graphs on temporal graphs. A temporal subgraph is a ρ-stable
(δ, γ )-quasi-clique if it is a connected temporal graph and
its community stability is no less than ρ (Section III-B for
details). In a nutshell, our main contributions are summarized
as follows.

Novel Stable Cohesive Subgraph Model: We develop a
novel temporal model, called maximal ρ-stable (δ, γ )-quasi-
clique (MSQC), to characterize stable cohesive subgraphs on
temporal graphs. We demonstrate that the standard maximal
γ -quasi-clique problem is a special case of MSQC. Since the
problem of enumerating all maximal γ -quasi-cliques in a static
graph is NP-hard [13], our problem is also NP-hard.

Efficient and Effective Algorithms: To enumerate efficiently
all MSQC, we first devise an effective temporal graph reduc-
tion algorithm to reduce the original graph size with near-
linear time complexity. The temporal graph reduction algo-
rithm applies a powerful stability-based pruning technique to
iteratively remove vertices. The core of this pruning is to check
whether the stability of the community containing vertex u is
less than ρ. We show that a naive solution to tackle this check
is intractable. Thus, we propose an efficient dynamic program-
ming algorithm, which can be done in linear time with respect
to (w.r.t.) the number of timestamps. Then, on the reduced

temporal graph, we proposed distance-based and bound-based
pruning to narrow down the search space or terminate tasks
earlier. Additionally, excluding-node and including-node prun-
ing strategies are also devised to prune some unqualified nodes
during the search. With these techniques, we final develop an
effective branch and bound algorithm to find all MSQC.

Experimental Results: We thoroughly evaluate our solutions
on seven real-world temporal graphs. The results show that our
best algorithm is much faster than the baselines on all datasets.
For example, on a temporal graph with millions of vertices and
edges, our best algorithm consumes less than 600 s to identify
all MSQC with most parameter settings; however, the baseline
algorithms cannot get the results within one day. Additionally,
the temporal graph reduction algorithm can prune 98% vertices
of the original graph. Furthermore, we also evaluate the effec-
tiveness of our model against three state-of-the-art baseline
models. The results show that our model can indeed identify
meaningful stable cohesive subgraphs that cannot be found by
baseline models.

II. RELATED WORK

Temporal Network Analyzing: Temporal dynamic is an
essential feature for real-world networks. Different from gen-
eral static networks, the edges of temporal networks are asso-
ciated with timestamps. It thus raises several new challenges
for temporal network analysis, including storage, query and
mining [1]. Many existing studies have been done for tempo-
ral network analysis, including pattern matching [5], shortest
path and reachability queries [6], [7], and minimum spanning
tree search [8]. Nevertheless, only a few recent researches are
tailored to detect subgraphs on temporal networks [2], [3],
[10], [14]–[18]. For example, Ma et al. [15] modeled the
heavy subgraph that maximizes the sum of edge weights in
a special temporal graph with unchanging vertices and edges
but changing edge weights. Kumar and Calders [14] investi-
gated the properties of temporal cycle and used the temporal
cycle to detect fraud. The core decomposition and clique enu-
meration have also been studied in temporal networks in [3]
and [16], respectively. The most related work to ours are [2]
and [10]. Specifically, Yang et al. [2] investigated the problem
of detecting diversified γ -denses in temporal networks, in
which γ -dense requires the γ -quasi-clique exists on any times-
tamp in a given time interval. Note that the γ -dense is different
from our model, because our (δ, γ )-quasi-clique requires that
the γ -quasi-clique condition is satisfied “on average,” result-
ing in that those temporal subgraphs that are not γ -dense may
be (δ, γ )-quasi-cliques by our definition, and our model takes
the community stability into account that is not considered
by γ -dense. Li et al. [10] proposed persistent community
model involving a vertex set and an interval set I, which
persistently maintains a k-core in any θ -length subinterval
of every interval of I. However, the model may not capture
potential stable cohesive subgraphs, because persistent k-core
poses a very strong constraint. Furthermore, the model sim-
ply regards multiple interactions between two individuals as
one interaction during any θ -length subinterval. However, our
model considers the frequency of interactions within the cohe-
sive subgraph. The experimental evaluation also show that the
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two models fail to detect the stable cohesive subgraphs that
are found by our model. Thus, our model is the first work that
explores the stable cohesive subgraphs on temporal graphs.

Cohesive Subgraph Mining: Cohesive subgraph mining has
received much attention over past decades [9]. Notable exam-
ples include clique [19], [20], densest subgraph [21]–[23],
γ -quasi-clique [12], [24], [25], k-core [26]–[28], and
k-truss [29]. The Monte Carlo algorithm with a binary
search strategy was employed to find the maximum clique
with high probability [20]. Tsourakakis [22] generalized
the traditional densest problem [21] to a k-clique densest
subgraph problem, where the density is defined as the number
of k-clique divided by the size of vertices. Liu and Wong [12]
proposed an enumeration algorithm based on the depth-first
search and several effective pruning techniques for mining all
maximal quasi-cliques. Li et al. [27] investigated influence
communities by applied k-core. Meanwhile, the cohesive
subgraph also is a building block toward more complex
tasks, including community mining [30], [31], reachability
query [32], and event identification [33].

Community Detection Over Dynamic Networks: Another
related line of work is community detection over dynamic
networks [34]. However, they differ from the temporal com-
munity detection problem as studied in this article. First, the
two graphs model different cases. Networks are used to model
the interactions between entities. In some cases, the edges
represent sequences of instantaneous interactions, which are
not continuously active. However, in other cases, edges are
active for non-negligible periods of time. Dynamic networks
model the first cases as a sequence of edge/node additions/
deletions. Temporal networks capture temporal information of
interactions occurred in the second cases, resulting in that tem-
poral networks describe data with fine granularity [4]. Second,
the solutions for them are different. Research on community
detection over dynamic networks usually focus on the effi-
cient maintenance or evolution of community structure. Thus,
it typically considers communities on the current snapshot. For
example, Epasto et al. [35] introduced an efficient incremen-
tal algorithm to maintain the densest subgraph on dynamic
networks, where the edges are deleted or added in each snap-
shot. Li et al. [36] proposed an efficient algorithm to maintain
the k-core over dynamic networks. Qiao et al. [37] proposed a
framework based on strong and weak events to analyze com-
munity evolution in dynamic networks. Unlike these studies,
temporal community detection typically considers communi-
ties that span a time interval, e.g., the stable cohesive subgraph
model proposed in our work.

III. NOTATIONS AND PROBLEM DEFINITION

A. Notations

In this article, we consider an undirected temporal graph
G = (V, E, T ) without self-loops, where V and E are the
set of vertices (nodes) and temporal edges, respectively. Each
temporal edge (u, v, [ts, te]) ∈ E denotes that u and v have
interactions during the time interval [ts, te], in which [ts, te]
consists of a set of continuous timestamps. Note that two tem-
poral edges (u, v, [ts1 , te1 ]) and (u, v, [ts2 , te2 ]) are different

(a) (b) (c)

Fig. 2. (a) Temporal graph G = (V, E,T ). (b) Temporal subgraph
G{a,b,c,d}([0, 6]). (c) De-temporal graph of G{a,b,c,d}([0, 6]).

if [ts1, te1 ] �= [ts2, te2 ]. Let n = |V| and m = |E | be
the number of nodes and temporal edges of G, respectively.
T = {t|(u, v, [ts, te]) ∈ E, t ∈ [ts, te]} is the time domain of G.
||T || denotes the total number of timestamps in T . For con-
venience, we assume that T is a set of continuous timestamps
and let T = {0, 1, 2, . . . , ||T || − 1}.

The de-temporal graph of G is denoted by G = (V, E),
where E = {(u, v)|∃(u, v, [ts, te]) ∈ E} and let m̄ = |E|.
Namely, G is a static graph that removes the time information
of G. Let Nu(V) = {v ∈ V|(u, v) ∈ E} be a set of neighbor
nodes of u in V . A temporal graph G is a connected temporal
graph if its de-temporal graph G is connected.

Definition 1 (Temporal Subgraph): For a vertex set H, we
let GH = (H, EH, TH) be a temporal subgraph of G induced
by H, where EH = {(u, v, [ts, te]) ∈ E |u, v ∈ H} and
TH = {t|(u, v, [ts, te]) ∈ EH, t ∈ [ts, te]}. More generally, we
denote the temporal subgraph GH(T) = (H, EH(T), T) induced
by the pair (H, T), where T is a time interval and EH(T) =
{(u, v, [ts′ , te′ ])|(u, v, [ts, te]) ∈ EH, [ts′ , te′ ] = [ts, te] ∩ T}.

Definition 2 (Average Degree): Given a temporal subgraph
GH(T), the accumulated degree of a vertex u in GH(T) is
defined as dT

u (H) =∑
(u,v,[ts,te])∈EH(T) ||[ts, te]||. Furthermore,

we let aT
u (H) = ([dT

u (H)]/||T||) be the average degree of u
in GH(T).

Intuitively, the higher the average degree of a node, the more
frequently it interacts in the temporal graph. So, the average
degree can be used to measure the temporal cohesiveness. For
simplicity, we use vertex set H to represent the corresponding
temporal subgraph GH if the context is clear. For simplicity,
we concentrate some frequently used symbols in TableI.

Example 1: Fig. 2(a) shows temporal graph G with five ver-
tices, nine temporal edges, and T = {0, 1, 2, . . . , 9}. Fig. 2(b)
represents the temporal subgraph of G induced by the pair
({a, b, c, d}, [0, 6]). The de-temporal graph of Fig. 2(b) is illus-
trated in Fig. 2(c). For vertex c, d[0,6]

c ({a, b, c, d}) = ||[3, 6]||+
||[0, 3]|| + ||[5, 6]|| + ||[1, 6]|| = 4 + 4 + 2 + 6 = 16 and
a[0,6]

c ({a, b, c, d}) = (16/7). Clearly, the temporal subgraph
G{a,b,c,d}[0, 6] is a connected temporal graph.

B. Problem and Complexity

One well-known cohesive subgraph model is γ -quasi-
clique, which has been widely applied in community search,
spam link detection, and regulatory motifs discovering [12],
[24], [25]. Based on this, we also define a new temporal
cohesive subgraph model as follows.

Definition 3 (γ -Quasi-Clique [12]): Given a de-temporal
graph G = (V, E) and a parameter γ , G is a γ -quasi-clique if
|Nu(V)| ≥ γ ·(|V| − 1) for any u ∈ V holds.
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TABLE I
SUMMARY OF NOTATIONS

Definition 4 [(δ, γ )-Quasi-Clique]: Given two parameters
δ and γ , the temporal subgraph GH(T) is a (δ, γ )-quasi-clique
if aT

u (H) ≥ γ (|H| − 1) for any u ∈ H holds and |H| ≥ δ. T
is called a dense interval of H and is maximal if there is no
(δ, γ )-quasi-clique GH(T ′) such that T ⊆ T ′.

Generally, the nodes in a temporal cohesive subgraph should
have high average degrees within the subgraph and the aver-
age degrees should be related to the number of nodes of the
subgraph. Thereby, by Definition 4, we know that the (δ, γ )-
quasi-clique is able to capture the above intuition very well.
Additionally, for a real-life temporal graph, many (δ, γ )-quasi-
cliques are small in size and may not be of interest to users (see
Section VI). Thus, we focus mainly on extracting (δ, γ )-quasi-
cliques with size is no less than δ as defined in Definition 4.
Since γ is a parameter that used to measure the compactness
of a graph, we might be interested in a compact graph with
γ ≥ 1/2. Such a setup has been commonly used [25], [38],
so we also set γ ≥ 1/2 in our paper.

Example 2: Reconsider the temporal graph G in Fig. 2(a).
Let δ = 3 and γ = 0.8, and we can claim that the
subgraph G{a,b,c}([2, 6]) is a (3, 0.8)-quasi-clique of G by
Definition 4. The reason is as follows. d[2,6]

a ({a, b, c}) =
||[2, 2]|| + ||[4, 6]|| + ||[2, 6]|| = 9, a[2,6]

a ({a, b, c}) =
([d[2,6]

a ({a, b, c})]/||[2, 6]||) = (9/5) ≥ 0.8 · (3 − 1),
a[2,6]

b ({a, b, c}) = (8/5) ≥ 0.8 · (3− 1), and a[2,6]
c ({a, b, c}) =

(9/5) ≥ 0.8 · (3 − 1). Moreover, we can show the interval
[2, 6] is a maximal dense interval for {a, b, c}. In a sim-
ilar way, we can derive that G{a,b,c}([3, 7]), G{a,c,d}([1, 6]),
G{a,c,d}([2, 7]), G{a,d,e}([1, 5]), and G{a,d,e}([2, 7]) are also
(3, 0.8)-quasi-cliques of G.

There may exist many overlapping maximal dense intervals
of H (e.g., in Example 2, there are two maximal dense
intervals [2, 6] and [3, 7] for {a, b, c}). Given an interval set
X = {T1, T2, . . . , Tx}, we let co(X) be the total number of
timestamps of X, which does not contain repeated timestamps.
Similar to the support of the frequent subgraph pattern [39],
we define the following community stability.

Definition 5 (Community Stability): Given a vertex subset
H ⊆ V and two parameters δ and γ , let MIγ

δ (H) be the
set of all maximal dense intervals of H. Then, the commu-
nity stability of H, denoted by CS(δ, γ, H), is defined as
CS(δ, γ, H) = co(MIγ

δ (H))/||T ||.

Based on Definition 5, we define the following model to
capture stable cohesive subgraphs.

Definition 6 [ρ-Stable (δ, γ )-Quasi-Clique]: Given a tem-
poral graph G and three parameters δ, γ , and ρ, a ρ-stable
(δ, γ )-quasi-clique of G is a temporal subgraph GH such that
GH is a connected temporal graph and CS(δ, γ, H) ≥ ρ.

In retrospect, we say that a subgraph is frequent in a col-
lection of graphs if it appears at least f times the number of
graphs [39] (i.e., its support is no less than a certain threshold).
Intuitively, a temporal subgraph is more stable if its temporal
cohesiveness occurs frequently. Thus, by Definition 6, we can
know that a temporal subgraph is stable if it is a connected
temporal graph and its community stability is no less than ρ,
resulting in that ρ-stable (δ, γ )-quasi-clique is reasonable to
characterize stable cohesive subgraph in temporal networks. In
addition, it has the following superiorities: 1) it has many ele-
gant computational properties to facilitate the algorithm design
of the following problem, which are discussed in Sections IV
and V and 2) adopting the model indeed can effectively iden-
tify some stable temporal patterns that cannot be found by the
existing models as illustrated in our experimental section.

Example 3: Reconsider the temporal graph G in Fig. 2(a).
Let δ = 3, γ = 0.8, and ρ = 0.7, and we can derive that the
temporal subgraph G{a,c,d} is a 0.7-stable (3, 0.8)-quasi-clique
of G by Definition 6. The reasons are as follows. First, the tem-
poral subgraph G{a,c,d} is a connected temporal graph. Second,
there are two maximal dense intervals [1, 6] and [2, 7] for ver-
tex set {a, c, d} (see Example 2), thus CS(3, 0.8, {a, c, d}) =
([co({[1, 6], [2, 7]})]/(||[0, 9]||)) = 0.7 ≥ ρ. In a similar way,
we can obtain that the temporal subgraph G{a,d,e} is also a
0.7-stable (3, 0.8)-quasi-clique of G. The temporal subgraph
G{a,b,c} is not a 0.7-stable (3, 0.8)-quasi-clique of G, because
CS(3, 0.8, {a, b, c}) = ([co({[2, 6], [3, 7]})]/(||[0, 9]||)) =
0.6 ≤ ρ, which contradicts with Definition 6.

Definition 7 [Maximal ρ-Stable (δ, γ )-Quasi-Clique]: A ρ-
stable (δ, γ )-quasi-clique GĤ is maximal if there is no other
ρ-stable (δ, γ )-quasi-clique GH such that Ĥ ⊆ H.

Problem Statement (MSQC): Given a temporal graph G and
three parameters δ, γ , and ρ, our problem is to extract all
maximal ρ-stable (δ, γ )-quasi-cliques from G.

Theorem 1 (Hardness): Given a temporal graph G =
(V, E, T ) and three parameters δ, γ , and ρ, the problem of
extracting MSQC from G is NP-hard.

Proof: We prove this theorem by reducing the maximal γ -
quasi-clique to a special case of MSQC. To be specific, we
consider a special temporal graph G = (V, E, T ), where G =
GV([1, 1]) = GV([2, 2]) = · · · = GV([||T ||, ||T ||]). Clearly,
for any H ⊆ V and interval T , we have aT

u (H) = dt
u(H) for any

timestamp t ∈ T . Furthermore, we can obtain MIγ
δ (H) = T

if the cohesive subgraph H is a γ -quasi-clique in the static
graph G. Consequently, mining the MSQC from the temporal
graph G is equivalent to find the maximal γ -quasi-clique in G
for any δ and ρ. Since the maximal γ -quasi-clique problem
is NP-hard [13], our problem is also NP-hard.

Challenges: Although there is a close connection between
our model and γ -quasi-clique [12], the existing solutions
of γ -quasi-clique cannot be adopted to solve our problem.

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:00:22 UTC from IEEE Xplore.  Restrictions apply. 



LIN et al.: MINING STABLE QUASI-CLIQUES ON TEMPORAL NETWORKS 3735

Because (δ, γ )-quasi-clique requires that the γ -quasi-clique
condition is satisfied “on average,” resulting in that the
solution of γ -quasi-clique is not necessarily a ρ-stable
(δ, γ )-quasi-cliques by our definition. To solve our problem,
a naive approach is to enumerate all (δ, γ )-quasi-cliques in
each possible de-temporal graph, then aggregates all maximal
dense intervals of each resulting vertex set to check which of
them is a maximal ρ-stable (δ, γ )-quasi-clique. However, such
an approach has the following two defects: 1) the total num-
ber of time intervals is [||T || · (||T || − 1)]/2; thus, the total
number of de-temporal graphs is O(||T ||2) and 2) identifying
all γ -quasi-cliques in each de-temporal graph is NP-hard [12];
thereby, it is very costly to check whether a subgraph is a max-
imal ρ-stable (δ, γ )-quasi-clique. Thus, the challenge of our
problem is how to devise efficient algorithms to prune the huge
search space. In the next sections, we will devise a powerful
temporal graph reduction technique, as well as an efficient
enumeration algorithm with four effective pruning techniques
to solve the MSQC problem.

IV. TEMPORAL GRAPH REDUCTION ALGORITHM

It is very expensive to calculate all maximal ρ-stable (δ, γ )-
quasi-cliques on original temporal graphs, because the problem
is NP-hard. Therefore, we present an effective and nontrivial
temporal graph reduction algorithm, called TGRA, to signifi-
cantly reduce the original temporal graph without losing any
maximal ρ-stable (δ, γ )-quasi-clique.

A. Critical Idea of Temporal Graph Reduction Algorithm

For convenience, we define a mining task as (GU, S), where
S ⊆ U has been selected as members of any ρ-stable
(δ, γ )-quasi-clique of GU . The task aims to find all ρ-stable
(δ, γ )-quasi-cliques H from GU such that S ⊆ H. Thus, our
maximal ρ-stable (δ, γ )-quasi-cliques problem indicates the
mining task (G,∅). Let lb(U, S) be the lower bound of ρ-
stable (δ, γ )-quasi-clique in (GU, S) and we will discuss the
bound in Section V-B.

Definition 8 (Maximal Candidate Dense Interval): Given
mining task (GU, S), interval T is a candidate dense interval
of u w.r.t. (GU, S) iff aT

u (U) ≥ γ · (max{δ, |S|, lb(U, S)} − 1).
T is further called a maximal candidate dense interval of
u w.r.t. (GU, S) if �T ′ ⊇ T such that aT ′

u (U) ≥ γ ·
(max{δ, |S|, lb(U, S)} − 1).

Given an interval set T̃ , we let MCDI(u, U, T̃ , S) be all
maximal candidate dense intervals of u w.r.t. (GU, S) in T̃ .
Namely, ∀T ∈MCDI(u, U, T̃ , S), T is a maximal candidate
dense interval of u w.r.t. (GU, S) and ∃I ∈ T̃ such that T ⊆ I.
We use MCDI(u) to represent MCDI(u, U, T̃ , S) if the con-
text is clear. We split the time domain TU into an interval
set denoted by IS(TU) (e.g., IS({1, 2, 3, 6, 7, 8, 11, 12}) =
{[1, 3], [6, 8], [11, 12]}). We next introduce an important
lemma to develop the temporal graph reduction algorithm. For
simplicity, we put all proofs of lemmas in the Appendix.

Lemma 1 (Stability-Based Pruning): We can prune u ∈ U
from task (GU, S) without losing any maximal ρ-stable (δ, γ )-
quasi-clique if co(MCDI(u, U, IS(TU), S)) < ρ · ||T ||.

Algorithm 1: Compute_MCDI(u, (GU, S), T̃ , δ, γ )

Input: A vertex u, a mining task (GU , S), an interval set T̃ and parameters δ, γ

Output: The interval set MCDI(u, U, T̃ , S)

1 T̃ � {T1, T2, . . . , Tl}, I ← ∅
2 for Ti ∈ T̃ do
3 dt ← dt

u(U)− γ · (max{δ, |S|, lb(U, S)} − 1) for all t ∈ Ti
4 S1 ← dTi .start
5 for j = 2 to Ti.end − Ti.start + 1 do
6 Sj = Sj−1 + dj+Ti .start−1

7 position←∞, Ii ← ∅
8 for π(Sj) = 2 to Ti.end − Ti.start + 1 do
9 if π−(π(Sj)− 1) < position then

10 position = π−(π(Sj)− 1)

11 if Sj − Sposition + dposition+Ti .start−1 ≥ 0 then
12 Ii = Ii ∪ {[position+ Ti.start − 1, j+ Ti.start − 1]}

else
13 Ii = Ii ∪ {[position+ Ti.start, j+ Ti.start − 1]}

14 I = I ∪ Ii

15 {[a1, b1], [a2, b2], . . . , [ak, bk]} ← Sort(I)

16 I ← {[a1, b1]}, x = b1
17 for j=2 to k do
18 if bj > x then
19 I ∪ {[aj, bj]}
20 x = bj

21 return I

There are two challenges in implementing the stability-
based pruning: one is how to calculate MCDI(u, U, T̃ , S)

effectively. A naive approach is to search all possible subin-
tervals of I ∈ T̃ for completing the maximality check of
Definition 8. Consequently, the naive approach is intractable.
After pruning all the unqualified vertices of U by Lemma 1,
the candidate dense intervals of the rest vertices may change,
resulting in that the pruned vertices may trigger a “butter-
fly effect” (i.e., pruning vertices may cause qualified vertices
become unqualified). Thus, the second challenge is how to
efficiently update the candidate dense intervals of vertices and
then iteratively prune those unqualified vertices until no vertex
can be pruned by Lemma 1. The following two sections will
discuss how to overcome the two challenges.

B. Identifying MCDI(u, U, T̃ , S) by Dynamic Programming

According to Definition 8, we have aT
u (U) ≥ γ ·

(max{δ, |S|, lb(U, S)} − 1) for any T ∈ MCDI(u, U, T̃ , S).
Clearly, aT

u (U) ≥ γ ·(max{δ, |S|, lb(U, S)}−1) is equivalent to∑
t∈T(dt

u(U)−γ ·(max{δ, |S|, lb(U, S)}−1)) ≥ 0. Considering
this, we propose a novel dynamic programming algorithm
(Algorithm 1) to identify efficiently MCDI(u, U, T̃ , S),
which transforms the problem into identifying all maximal
intervals such that the sum of the degree of u (after being
updated by line 3 in Algorithm 1) in each interval is not less
than 0. Before proceeding further, we present some useful
symbols: given a degree sequence (d1, d2, . . . , dT ), we let
Sj = ∑j

i=1 di be the prefix degree sum and π be a permuta-
tion that sorts these prefix sums in increasing order and π(Sj)

is the position of Sj in the permutation. π−(Sj) is the position
of Sj in the prefix sum sequence (i.e., π−(Sj) = j). T.start
and T.end are the starting time and the ending time of T ,
respectively.
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Algorithm 2: TGRA(G, δ, γ , ρ)
Input: Temporal graph G = (V,E,T ) and three parameters δ, γ and ρ

Output: The reduced graph GṼ
1 Q← ∅, mark(u) = True for all u ∈ V
2 for u ∈ V do
3 I(u)← Compute_MCDI(u, (G,∅), IS(T ), δ, γ )

4 if co(I(u)) < ρ · ||T || then
5 Q.push(u) and mark(u) = False {/* stability-based */}

Update
6 while Q �= ∅ do
7 u←Q.pop()

8 for v ∈ Nu(V) and mark(v) = True do
9 update I(v) by Lemma 2

10 if co(I(v)) < ρ · ||T || then
11 Q.push(v) and mark(v) = False

12 Ṽ ← {v|mark(v) = True}
13 return GṼ

Definition 9 (Maximal j-Truncated Candidate Dense
Interval): Given a truncated timestamp j, we let the maximal
j-truncated candidate dense interval be an interval [tru(j), j]
such that Sj − Stru(j)−1 ≥ 0 and tru(j) is minimized.

By Definition 9, we can know that MCDI(u, U, T̃ , S)

is included in all these maximal j-truncated candidate dense
intervals, where j is a timestamp in T̃ . Our dynamic program-
ming algorithm computes all maximal j-truncated candidate
dense intervals in a recursive way.

Algorithm 1 first initializes result set I as ∅ (line 1). For
finding all maximal j-truncated candidate dense intervals, it
computes the prefix sum Sj (lines 4–6). In lines 7–13, the
algorithm recursively finds the maximal (j + Ti.start − 1)-
truncated candidate dense interval if any. In line 14, I
represents all maximal j-truncated candidate dense intervals,
where j is a timestamp in T̃ if any. Since these intervals
may contain each other, the algorithm merges these intervals
to get the MCDI(u, U, T̃ , S) in lines 15–20. To be spe-
cific, the algorithm first sorts the above all maximal intervals
in increasing order by the starting time of each interval.
Let {[a1, b1], [a2, b2], . . . , [ak, bk]} be the sorted interval set
(line 15). Note that it only takes the interval with the maxi-
mum ending time if there are several intervals that have the
same starting time. By doing so, ai �= aj and bi �= bj if i �= j.
Then, the algorithm merges these intervals for identifying all
maximal candidate dense intervals MCDI(u, U, T̃ , S) (lines
16–20). The following example illustrates the procedure.

Example 4: Without loss of generality, we assume l = 1
and T1.start = 1. There is a sequence of numbers: 13, −3,
−25, 20, −3, −16, −23, 18, 20, −7, 12, −5, −22, 15, −4,
7, where each number represents the updated degree of u in
line 3 of Algorithm 1. In lines 4–6, the algorithm computes
the prefix sum as follows: 13, 10, −15, 5, 2, −14, −37, −19,
1, −6, 6, 1, −21, −6, −10, −3. Then, it sorts these prefix
sums in ascending order and obtains the maximal candidate
dense interval ending with any timestamp by running lined
8–14 of Algorithm 1. These intervals are listed as follows:
[8, 13], [4, 15], [4, 10], [4, 14], [4, 16], [4, 9], [4, 12], [4, 11].
Subsequently, the algorithm merges these intervals for the final
result by running lines 15–20. So, the maximal candidate dense
interval of u is [4, 16].

Theorem 2: The time complexity of Algorithm 1 is
O(

∑l
i(||Ti||)), where T̃ = {T1, T2, . . . , Tl}.

Proof: ∀Ti, the algorithm first takes O(||Ti||) time to update
the degree of u (line 3), and O(||Ti||) time to get the pre-
fix sums (lines 4–6). Then, it takes O(||Ti||) time to generate
the maximal candidate dense interval ending with any times-
tamp j+ Ti.start − 1. Note that it takes O(||Ti||) time to sort
Sj by utilizing the counting sort method (line 8). Thus, the
algorithm takes

∑l
i O(||Ti||) in lines 2–14. In line 15, the algo-

rithm takes O(co(I)) time to sort I by utilizing the counting
sort method. In lines 17–20, the algorithm takes O(k) time
to merge intervals, where k ≤ co(I). Therefore, the algo-
rithm takes O(co(I)) time in lines 15–20. Clearly, O(co(I)) is
bounded by

∑l
i O(||Ti||). Putting these together, Algorithm 1

takes
∑l

i O(||Ti||) in total.

C. Incrementally Update Maximal Candidate Dense Intervals

For convenience, we denote TU(u, v) as the interval
set of u and v connections in GU . Namely, TU(u, v) =
{[ts, te]|(u, v, [ts, te]) ∈ EU}. Observed that we only need
to update u’s neighbors’ partial maximal candidate dense
intervals when vertex u is deleted. Considering this, we effi-
ciently implement the update process, which can avoid some
redundant computations. Below, we summarize the update
process into the following lemma.

Lemma 2: After deleting vertex u from mining task
(GU, S), we have MCDI(v, U\{u}, IS(TU\{u}), S) = Tb ∪
MCDI(v, U\{u}, Ta, S) for any v ∈ Nu(U), where Ta ⊆
MCDI(v, U, IS(TU), S). ∀Ti ∈ Ta, ∃[ts, te] ∈ TU(u, v) such
that Ti ∩ [ts, te] �= ∅. Tb =MCDI(v, U, IS(TU), S)\Ta.

Note that the worst case for this update process is Tb = ∅,
i.e., all maximal candidate dense intervals of v are affected,
resulting in that these maximal candidate dense intervals need
to be calculated from scratch.

D. Temporal Graph Reduction Algorithm

The temporal graph reduction algorithm TGRA is outlined
in Algorithm 2 that uses the stability-based pruning to reduce
the original temporal graph. Note that in the original temporal
graph, we have lb(V,∅) = δ (see Section V-B). Concretely,
given temporal graph G and three parameters δ, γ , and ρ as
inputs, the algorithm outputs GṼ as the reduced graph. The
algorithm first initializes queue Q as ∅ to maintain all vertices
that need to be deleted and marks vertex u as true that repre-
sents u has not been deleted yet (line 1). Then, the algorithm
executes the stability-based pruning to prune some unquali-
fied vertices (lines 2–5). Subsequently, it executes the update
process (Lemma 2) when the unqualified vertices are deleted
(lines 6–11). Finally, the algorithm returns the reduced graph
GṼ (lines 12 and 13). Clearly, TGRA can guarantee this process
correctness due to the previous analysis.

Theorem 3: The time complexity of Algorithm 2 is O((n+
m̄||T ||)||T ||), respectively.

Proof: By Theorem 2, we know that the time spent on
computing maximal candidate dense intervals I(u) is O(||T ||)
for any u ∈ V . Thus, Algorithm 2 takes O(n||T ||) time in
lines 2–5. In lines 6–11, the algorithm executes the update
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process of maximal candidate dense intervals. Specifically,
the algorithm traverses each edge of the de-temporal graph
G of G at most two times in the main loops (except for
applying Lemma 2 to update the maximal candidate dense
intervals). When the algorithm traverses an edge (u, v) (line
8), it applies Lemma 2 to update the I(v). The update process
takes

∑l
i O(||Ti||) in the worst case by Algorithm 1, in which

I(v) = {T1, T2, . . . , Tl}. Clearly,
∑l

i O(||Ti||) is bounded by
||T ||2. Thus, the algorithm takes O(m̄||T ||2) to complete the
update in lines 6–11, where m̄ is the number of edges in
de-temporal graph G of G. Consequently, Algorithm 2 takes
O((n+ m̄||T ||)||T ||) in total.

V. ENUMERATION ALL MAXIMAL ρ-STABLE

(δ, γ )-QUASI-CLIQUES

In this section, we first propose an algorithm to compute
the community stability of a vertex set. Then, four powerful
pruning rules are proposed. Finally, we devise an enumeration
algorithm to detect all maximal ρ-stable (δ, γ )-quasi-cliques.

A. Community Stability Computation

Recall that a temporal subgraph is a ρ-stable (δ, γ )-quasi-
clique if it is a connected temporal graph and its com-
munity stability is at least ρ. In this section, we design
a filtering and verification algorithm to compute the com-
munity stability of C, which is sketched in Algorithm 3.
Intuitively, the algorithm filters out the invalid time intervals
layer by layer until the community stability is completely
calculated. For convenience, we define an “intersection”
operation

⊗
for two interval sets as follows: let Tk =

{[ts1, te1 ], . . . , [tsk , tek ]} and Th = {[tl1, tr1 ], . . . , [tlh , trh ]},
and we define Tk

⊗
Th = {T1, T2, . . . , Tw}, where Ti ⊆

[tsj , tej] and Ti ⊆ [tlp, trp ] for all i and some j and
p, such as {[1, 4], [6, 10], [12, 14]}⊗{[2, 7], [11, 15]} =
{[2, 4], [6, 7], [12, 14]}.

Given vertex set C and parameters δ and γ as inputs,
Algorithm 3 outputs the community stability of C. As long
as T1 �= ∅, Algorithm 3 calls Algorithm 1 to compute the
maximal candidate dense intervals of each vertex in C w.r.t.
(GC, C) in the interval set T1 and updates T2 by “intersect-
ing” these interval sets to filter out invalid intervals (line 3).
T1∩T2 is the maximal dense intervals of C (Theorem 4); thus,
the algorithm updates I (line 4). To avoid redundant compu-
tation, the algorithm subtracts T1 from T2 as the update of T1
for the next iteration (line 5).

Theorem 4: Algorithm 3 can correctly compute the commu-
nity stability of C, and its time complexity is O(|C| · ||TC||2).

Proof: For correctness, ∀T /∈ ⊗
u∈C MCDI(u, C, T1,

C), GC(T) is not a (δ, γ )-quasi-clique (Definition 4).
Thus, we can safely filter out the invalid intervals
(line 3). Since all maximal dense intervals of C fall into⊗

u∈C MCDI(u, C, T1, C), Algorithm 3 further iteratively
calculates I from

⊗
u∈C MCDI(u, C, T1, C). Consequently,

Algorithm 3 returns the community stability of C.
For time complexity, there are at most ||TC|| loops. In

each loop, the algorithm involves Algorithm 1 to compute

Algorithm 3: CS(δ, γ , C)
Input: Vertex set C and two parameters δ and γ

Output: The community stability of C
1 I ← ∅, T1 ← IS(TC), T2 ← ∅
2 while T1 �= ∅ do
3 T2 ←

⊗
u∈C Compute_MCDI(u, (GC, C),T1, δ, γ )

4 I ← I ∪ (T1 ∩ T2)

5 T1 ← T2 \ T1

6 return co(I)
||T ||

MCDI(u, C, T1, C) for each vertex u ∈ C. Accordingly, the
worse-case time complexity is O(|C| · ||TC||2).

B. Powerful Pruning Techniques

In this section, we further present four effective pruning
techniques used in Section V-C. These pruning techniques
can prune some unqualified vertices that are definitely not
contained in any ρ-stable (δ, γ )-quasi-clique of mining task
(GU, S). For convenience, we let dis(u, v,G) be the number
of edges on the shortest path between u and v in the de-
temporal graph G of G. The diameter of G is defined as
D(G) = maxu,v∈V{dis(u, v,G)}.

Lemma 3 (Distance-Based Pruning): Given temporal sub-
graph GH(T) with h = |H| ≥ 2, if GH(T) is a (δ, γ )-quasi-
clique, then

D(GH(T)) =
{

1, h−2
h−1 < γ ≤ 1

≤ 2, h−2
2(h−1)

< γ ≤ h−2
h−1 .

(1)

From Lemma 3, we know that D(GH(T)) is not larger
than f (γ ) if GH(T) is a (δ, γ )-quasi-clique, where f (γ ) = 1
when (h− 2/h− 1) < γ ≤ 1, and f (γ ) = 2 when
[(h− 2)/(2(h− 1))] < γ ≤ [(h− 2)/(h− 1)]. Recalling that
γ ≥ (1/2); thus, we can derive Lemma 3 considering all
cases of D(GH(T)) because limh→∞ [(h− 2)/(2(h− 1))] =
(1/2) ≤ γ . Consequently, we can prune these vertices that are
farther away than f (γ ) from the selected vertex set S. Formally,
for the mining task (GU , S), we denote P(U, S) = ∩u∈S{v ∈
U|dis(u, v,GU) ≤ f (γ )} and then we can safely delete any
vertex that is not in P(U, S).

Below, we design a bound-based pruning technique to
prune the whole (GU, S) if there does not exist any ρ-stable
(δ, γ )-quasi-clique in (GU, S). For convenience, we denote
AS(U, v) = maxI⊆TU {aI

v(S)} and AS(U, S) = ∑
v∈S AS(U, v)

for vertex v ∈ U. We sort vertex u ∈ U \S in descending order
of AS(U, u) and denote the sorted vertices u1, u2, . . . , u|U\S|.

Lemma 4: Given task (GU, S) and S �= ∅. If S ⊆ Y ⊆ U and
Y is a ρ-stable (δ, γ )-quasi-clique, then |Y| ≤ ub(U, S), where
ub(U, S) = max{k|AS(U, S)+∑k

i=1 AS(U, ui) ≥ |S|γ (|S|+k−
1)} + |S|.

Lemma 5: Given task (GU, S) and S �= ∅, if S ⊆ Y ⊆
U and Y is a ρ-stable (δ, γ )-quasi-clique, then lb(U, S) ≤
|Y|, where lb(U, S) = max{lb1(U, S), lb2(U, S)}, lb1(U, S) =
min{k|AS(U, S) +∑k

i=1 AS(U, ui) ≥ |S|γ (|S| + k − 1)} + |S|,
and lb2(U, S) = ([|S|2 − γ |S| − AS(U, S)/[|S|(1− γ )]).

Note that when S = ∅, we cannot use Lemmas 4 and 5
to compute the bounds. Thus, we let ub(U,∅) = |U| and
lb(U,∅) = δ for convenience.
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Lemma 6 (Bound-Based Pruning): Given task (GU, S), we
can safely prune the whole task if it satisfies one of the fol-
lowing conditions: 1) |U| < δ; 2) ub(U, S) < lb(U, S); 3)
ub(U, S) < δ; and 4) δ ≤ ub(U, S) < |S|.

Note that once δ ≤ ub((GU, S)) = |S|, we return the pruned
subgraph as GS, because there are no more vertices that can
be added to S for task (GU, S).

For task (GC, S), we will divide (GC, S) into two different
subspaces by selecting vertex v ∈ C\S when C is not a ρ-stable
(δ, γ )-quasi-clique (Section V-C): 1) the subspace of excluding
v and 2) the subspace of including v. Below, we present the
excluding-node pruning and including-node pruning for the
above two subspaces, respectively.

Excluding-Node Pruning: Recall that the deletion of v may
trigger a “butterfly effect,” i.e., pruned v may cause its qualified
neighbors become unqualified, deletion of v’s neighbor may
result in deletion of v’s neighbor’s neighbor, and so on. Thus,
we can iteratively delete those unqualified vertices until no
vertex can be pruned. The process is similar to TGRA, except
that the search terminates once any vertex in S is deleted. The
details of the pruning rules are described in Section V-C.

Lemma 7 (Including-Node Pruning): For task (GC, S∪{v}),
let I = ⊗

w∈S∪{v}MCDI(w, C, IS(TC), S ∪ {v}). If co(I) <

ρ · ||T ||, we can safely prune the whole mining task. If
co(I

⊗
MCDI(u, C, IS(TC), S∪{v, u})) < ρ · ||T || for vertex

u ∈ C \ {S ∪ {v}}, then we prune u from (GC, S ∪ {v}) without
loss of accuracy.

C. BB&SCM Algorithm

BB&SCM (branch and bound & stable cohesive subgraph
mining) is a tractable algorithm to mine all maximal ρ-stable
(δ, γ )-quasi-cliques (Algorithm 4). BB&SCM includes two
stages. First, it calls Algorithm 2 to reduce the original tem-
poral graph. Subsequently, on the reduced temporal graph, we
use all previous pruning techniques to devise the branch and
bound algorithm (B&B) for enumerating all maximal ρ-stable
(δ, γ )-quasi-cliques. Specifically, Algorithm 4 first initializes
result set R as an empty set and calls Algorithm 2 to reduce
significantly the original temporal graph (line 1). Then, it calls
B&B procedure (Algorithm 5) with reduced temporal graph
GṼ , an empty set (of selected vertices), and parameters δ, γ ,
and ρ (line 2).

Algorithm 5 is a recursive procedure of mining task (GU , S).
Concretely, it first applies the distance-based pruning rule to
prune some unqualified vertices and denotes Ũ as the pruned
vertex set (line 1). Then, it invokes the bound-based prun-
ing to determine whether the task needs to continue (lines
2 and 3). If it is true, for each connected temporal graph
C that contains S and ub(C, S) ≥ δ, the algorithm checks
whether cohesive subgraph C is a maximal ρ-stable (δ, γ )-
quasi-clique. If it is true, the algorithm updates the result set
(lines 8–10). Otherwise, the algorithm randomly selects a node
v ∈ C\S to branch task (GC, S) into two subtasks (lines 11–34).
The algorithm executes the process of excluding-node prun-
ing (lines 12–27) and including-node pruning (lines 28–34)
respectively. For excluding-node pruning, the algorithm initial-
izes vertex set D as {v} to collect the deleted vertices and queue
Q to maintain all vertices that need to be deleted (line 12). In

Algorithm 4: BB&SCM(G, δ, γ, ρ)

Input: Temporal graph G = (V,E,T ) and three parameters δ, γ and ρ

Output: The all maximal ρ-stable (δ, γ )-quasi-cliques of G
1 R← ∅, GṼ ← TGRA(G, δ, γ, ρ)

2 B&B(GṼ , ∅,δ,γ ,ρ)
3 return R

Algorithm 5: B&B(GU , S, δ, γ , ρ)
1 Ũ← P(U, S) {/* distance-based pruning */}
2 if at least one condition of Lemma 6 holds for (GŨ , S) then
3 return {/* bound-based pruning */}

4 if δ ≤ ub(Ũ, S) = |S| then
5 GŨ ← GS

6 CT ← all connected temporal graphs of GŨ
7 for C ∈ CT and S ⊆ C and ub(C, S) ≥ δ do
8 if there is a R ∈R s.t. C ⊆ R then

jump Line 7

9 if CS(δ, γ , C) ≥ ρ then
10 R←R ∪ {C}

else
11 randomly select vertex v ∈ C \ S
12 D← {v}, Q← ∅ {/* excluding-node pruning */}
13 for u ∈ C \ {v} do
14 I(u)← Compute_MCDI(u, (GC\v, S), IS(TC\v), δ, γ )

15 if co(I(u)) < ρ · ||T || then
16 if u ∈ S then
17 jump Line 28

18 Q.push(u)

19 while Q �= ∅ do
20 u←Q.pop(), D← D ∪ {u}
21 for w ∈ Nu(C) and w /∈ D do
22 update I(w) by Lemma 2
23 if co(I(w)) < ρ · ||T || then
24 if w ∈ S then
25 jump Line 28

26 Q.push(w)

27 B&B(GC\D, S, δ, γ, ρ)

28 I ←⊗
w∈S∪{v}MCDI(w, C, IS(TC), S ∪ {v}) {/* including-node

pruning */}
29 if co(I) < ρ · ||T || then

jump Line 7

30 A← ∅
31 for u ∈ C \ {S ∪ {v}} do
32 if co(I

⊗
MCDI(u, C, IS(TC), S ∪ {v, u})) < ρ · ||T || then

33 A.push(u)

34 B&B(GC\A, S ∪ {v}, δ, γ, ρ)

lines 13–26, the algorithm first checks which nodes of C \ {v}
should be deleted and pushes them into Q. As long as Q �= ∅,
it pops vertex u from Q and updates u’s neighbors’ maximal
candidate dense intervals. Note that once any vertex in S is
deleted, it jumps to another search subspace (lines 16 and 17
and lines 24 and 25). For including-node pruning, it directly
applies Lemma 7 to prune those unqualified vertices or the
whole search subspace (lines 28–34). As Section VI shows,
the two pruning techniques can largely reduce the number of
nodes in C, thus substantially improving the search efficiency
of the two subspaces. Clearly, the above two subtasks contain
all cases of task (GC, S). Thus, BB&SCM performs an enu-
meration search and the algorithm derives correctly maximal
ρ-stable (δ, γ )-quasi-cliques. Fig. 3 illustrates the procedure
of Algorithm 4.

Complexity Analysis: Since the problem of identifying all
maximal ρ-stable (δ, γ )-quasi-cliques is NP-hard, the worst
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case time complexity of Algorithm 4 is exponential. Clearly,
our BB&SCM is a powerful binary enumeration tree due to
these pruning techniques in B&B. Specifically, let n̂ and T̂ be
the largest number of nodes and time domain of connected
temporal graphs of the reduced graph, respectively. There are
at most O(2n̂) subspaces in each connected temporal graph of
the reduced graph (a subspace corresponds to a B&B algo-
rithm). In each B&B, the algorithm takes O(n̂||T̂ ||2) time
to determine whether the current cohesive subgraph is a ρ-
stable (δ, γ )-quasi-clique (Theorem 4). If not, the algorithm
takes O((n̂ + m̂||T̂ ||)||T̂ ||) time to execute the excluding-
node pruning (Theorem 3) and requires O(n̂||T̂ ||2) to execute
the including-node pruning, where m̂ is the largest number
of edges in connected subgraphs of G. Therefore, the time
complexity of BB&SCM is O(nr · 2n̂(n̂ + m̂)||T̂ ||2 + (n +
m̄||T ||)||T ||), where m̄ = |E| and nr is the number of con-
nected temporal graphs of the reduced temporal graph. Since
n̂ is usually not very large (Section IV-D) and the pruning
techniques in B&B are very effective, the algorithm can deal
with large-scale temporal graphs.

Greedy Vertex Selection: Recall that line 11 of Algorithm 5
randomly selects vertex v to branch task (GC, S) into two sub-
tasks. However, the approach may be ineffective because it
may select a bad vertex that slows the pruning process. Here,
we propose a heuristic approach to evaluate the quality of v.
Specifically, the degree of v w.r.t. C in the time domain TC

should be as large as possible, the reason is that C \ {v} may
be more sparse such that I(u) in line 14 of Algorithm 5 could
be even smaller, resulting in that excluding-node pruning can
prune more vertices. On the other hand, the maximal candidate
dense intervals of v w.r.t. (GC, S) in interval set IS(TC) should
be as small as possible, because I in line 28 of Algorithm 5
could be even smaller, resulting in that including-node pruning
can prune more vertices by Lemma 7. Based on these intu-
itions, we design function Q to evaluate the quality of v as
follows: Q(v, C, S) = dTC

v (C) − co(MCDI(v, C, IS(TC), S)).
Thus, we select vertex v ∈ C\S that has the largest Q(v, C, S).

VI. EXPERIMENTAL EVALUATION

Here, we evaluate the efficiency, scalability, and effective-
ness of our approaches. All algorithms are implemented in
C++ and compiled using g++ compiler at −O2 optimization
level. All experiments are conducted on a server with a
2.4-GHz Xeon CPU and 256-GB memory running CentOS 6.1.

A. Experimental Setting

Datasets: Seven real-world temporal datasets are used in our
experiments. CollegeMsg (Msg) is a private message network
at the University of California, Irvine, in which edge (u, v, t)
means that user u sent a message to user v at time t. Chess is a
game network in which temporal edge (u, v, t) records players
u and v played a chess game at time t. Facebook wall posts
(Facebook) is the wall posts between users in Facebook. Linux
and Enron are temporal communication networks, where the
temporal edge (u, v, t) denotes that u sent v an email at
time t. Edge (u, v, t) of Wikipedia simple-En (Wiki) indi-
cates that article u and v were connected by a hyperlink

TABLE II
STATISTICS OF DATASETS. dmax IS THE MAXIMUM NUMBER OF

TEMPORAL EDGES ASSOCIATED WITH A VERTEX. TS IS THE TIME UNIT

FOR EACH SNAPSHOT

at time t. DBLP is a collaboration network, where edge
(u, v, t) represents author u and v coauthored a publication
at time t. In our experiments, the self-loops are deleted and
directed temporal graphs are converted into undirected tem-
poral graphs. We adopt a similar method as used in [2] to
transform these (u, v, t) into our interval form. Namely, tem-
poral edge (u, v, [ts, te]) of our model means that u and v have
an interaction at time t for any t ∈ [ts, te]. The statistics of
datasets is shown in Table II. All datasets are downloaded
from http://konect.unikoblenz.de/, except that CollegeMsg is
downloaded from http://snap.stanford.edu/.

Algorithms: We compare seven different algorithms for
efficiency testing: 1) Quick [12]; 2) TGRA (Section IV);
3) BB&SCM-BA; 4) BB&SCM-EX; 5) BB&SCM-IN;
6) BB&SCM; and 7) BB&SCM-GR. Specifically, Quick is
a state-of-the-art algorithm that can identify all maximal
γ -quasi-cliques from de-temporal graph G. BB&SCM-BA
enumerates all maximal ρ-stable (δ, γ )-quasi-cliques using
BB&SCM framework but only applies the distance-based prun-
ing and bound-based pruning. BB&SCM-EX and BB&SCM-
IN are BB&SCM-BA with the excluding-node pruning and
the including-node pruning, respectively. BB&SCM-GR is
BB&SCM with the greedy vertex selection. To the best of our
knowledge, there is no existing work to detect stable cohe-
sive subgraphs on temporal networks. Thus, we use Quick
and BB&SCM-BA as baselines for efficiency testing. Note that
BB&SCM-BA, BB&SCM-EX, BB&SCM-IN, and BB&SCM
have certain randomness (line 11 of Algorithm 5), we repeat
ten times and report the average results for them. To evaluate
the effectiveness of the proposed model, we adopt Quick [12],
DClique [2], and PCore [10] as baseline models. DClique can
find diversified temporal cohesive subgraphs, which may not
have the property of stability. PCore is also a state-of-the-art
temporal cohesive subgraph model. The model involves a ver-
tex set and an interval set I, which persistently maintains a
k-core in any θ -length subinterval of each interval of I. Unless
otherwise stated, we terminate the execution of an algorithm
when its running time exceeds one day.

Parameters: In our experiments, δ varies from 6 to 14 with a
default value 10. γ varies from 0.5 to 0.9 with a default value
0.7, and ρ ranges from 0.5 to 0.7 with a default value 0.6.
Unless otherwise stated, we take the default values of other
parameters when changing a parameter.

B. Effectiveness Evaluation

Goodness Effectiveness Metric: Most previous effective-
ness metrics (e.g., conductance or modularity) only consider

Authorized licensed use limited to: BEIJING INSTITUTE OF TECHNOLOGY. Downloaded on January 23,2024 at 06:00:22 UTC from IEEE Xplore.  Restrictions apply. 



3740 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS, VOL. 52, NO. 6, JUNE 2022

Fig. 3. Illustration of running BB&SCM algorithm on an example temporal network. By setting γ = 0.6, ρ = 0.6, and θ = 3, the high-level idea of
BB&SCM algorithm consists of two stages. At the first stage, a temporal graph reduction algorithm (i.e., Algorithm 2) is executed to reduce the size of the
original temporal network. The second stage iteratively runs a branch and bound algorithm framework (i.e., Algorithm 5), which identifies final answers on
the reduced temporal network. Specifically, it randomly first selects a node (e.g., f ) and executes Excluding-node pruning and Including-node pruning in steps
2 and 6, respectively. For example, d and f are pruned by Excluding-node pruning at step 2. Then, node g is selected for next iteration. Until returning to a
stable cohesive subgraph in step 4. Similarly, it executes Including-node pruning in step 6 and Distance pruning in step 7. The process continues until another
stable cohesive subgraph is identified in step 8. Note that some pruning techniques (Section V-B) may not work during iteration, we omit the intermediate
process.

(a) (b) (c) (d) (e)

Fig. 4. Statistical characterization of our MSQC. (a) Linux (vary γ ). (b) Linux (vary ρ). (c) Enron (vary γ ). (d) Enron (vary ρ). (e) Size distributed of MSQC.

TABLE III
QUALITY OF Quick, DClique, PCore, AND MSQC IN TERMS OF TEMPORAL

DENSITY (TD). EACH RESULT IS SHOWN IN AVERAGE ± STANDARD

DEVIATION OVER ALL DETECTED TEMPORAL SUBGRAPHS. THE BEST

RESULT IS HIGHLIGHTED IN BOLD

structural information but temporal attributes [40]. Here, we
generalize the existing temporal cohesiveness metric [17]
to the entire time domain of the subgraph. Specifically, let
GC be a temporal subgraph, we define its temporal density
TD(C) = ([

∑
u∈C dTC

u (C)]/[|C|(|C| − 1)||TC||]). Clearly, TD
ranges from 0 to 1. Intuitively, the larger TD(C) is, the denser
C is in the whole temporal extent. Thereby, an temporal cohe-
sive subgraph in a temporal graph should have a high temporal
density.

Exp-1 (Quality of Quick, DClique, PCore, and MSQC):
The experiments evaluate the quality of temporal subgraphs
detected by different models with their default parameters.
For PCore, different datasets have different parameter settings.
Pcore did not reported parameter settings on other datasets
except for the four datasets elaborated in Table III. Therefore,
for a fair comparison, we choose the four datasets and report

the comparison results in terms of temporal density, in which
the scores are averaged over all detected temporal subgraphs
by each model. Meanwhile, the standard deviations are also
reported (Table III). The best scores are achieved by our model
on all datasets expect for Chess. Since chess games were not
held frequently, no stable quasi-cliques can be identified by
our model. In addition, we also observe that PCore outper-
forms Quick and DClique in three of the four datasets. The
reason is that PCore also considers multiple candidate intervals
to measure the persistence of the community. However, Quick
does not consider the temporal information of the graph and
DClique only considers an interval to identify communities.
In a nutshell, this experiment indicates that our model is
denser and higher quality in terms of temporal feature than
baselines.

Exp-2 (Statistical Characterization of Our MSQC):
Fig. 4(a)–(d) reports the number of MSQC on Linux and Enron
by varying γ or ρ with δ = 6. Similar results can also be
observed on other datasets. From Fig. 4(a)–(d), we can see
that the number of MSQC decreases with an increasing γ or
ρ. The reason is that with larger γ or ρ, the constraint of
ρ-stable (δ, γ )-quasi-clique will be stronger, thus the number
of MSQC decreases. Fig. 4(e) reports the distribution of the
size of MSQC on Linux and Enron with γ = 0.5, ρ = 0.5
and δ = 3. The similar trends can also be obtained on other
datasets and with other parameter settings. We can observe
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(a) (b)

Fig. 5. Effect of different parameter distributions on the temporal density and
running time of MSQC. (a) Average temporal density. (b) Running time (s).

(a) (b) (c)

(d) (e) (f)

Fig. 6. Case study on DBLP. (a) Quick. (b) PCore. (c) Our model. (d) Quick.
(e) PCore. (f) Our model.

that the size of the MSQC is mainly distributed ranges from
4 to 6 on Linux and Enron. The reason can be explained as
follows: it is difficult to form a stable quasi-clique at a small
size and restrictions on MSQC in Definition 4 will become
stronger as its size grows.

Exp-3 (Effect of Different Parameter Distributions on the
Temporal Density and Running Time of MSQC): In this exper-
iment, we study the impact of γ and ρ distributions for
the temporal density and running time of MSQC using the
dataset Linux and BB&SCM algorithm. To get more stable
quasi-cliques, we fixed δ = 3 and treated all output stable
quasi-cliques in 6 days as candidates, and reported aver-
age temporal density and running time in Fig. 5. As shown
in Fig. 5(a), we can observe that the medium values of γ

and ρ are more probable to yield higher temporal density
results. The running time [Fig. 5(b)] generally decreases with
the growth of γ and ρ. The reason is that larger values
of γ and ρ improve the pruning techniques (Section V-B);
hence, the algorithm requires less time to identify stable
quasi-cliques.

Exp-4 (Case Study on DBLP): Fig. 6 visualizes the cohe-
sive subgraphs containing Prof. M. Lenzerini or J. M. Cherry
obtained by Quick, PCore, and our model, respectively. In
particular, Fig. 6(a)–(c) show the cohesive subgraph of M.
Lenzerini by each model. As shown in Fig. 6(c), the cohesive
subgraph of M. Lenzerini obtained by our model is a stable
cohesive subgraph, because all authors in the subgraph col-
laborate closely and stably with M. Lenzerini from 1999 to
2016 (detailed information shown in Table IV). Although the
subgraph obtained by Quick [Fig. 6(a)] is also cohesiveness in
terms of structure, the authors did not work with M. Lenzerini

(a) (b)

(c) (d)

Fig. 7. Performance of temporal graph reduction technique. (a) Running
time of TGRA. (b) Percentage of remaining nodes (vary δ). (c) Percentage of
remaining nodes (vary γ ). (d) Percentage of remaining nodes (vary ρ).

frequently, resulting in that the cohesiveness of the subgraph
was not stable over time. Namely, the subgraph obtained by
Quick includes some unstable collaborators who did not fre-
quently and densely collaborate with M. Lenzerini. Because
PCore requires the k-core condition to be satisfied in any θ -
length subinterval within a valid community, fewer authors
are detected by PCore [Fig. 6(b)]. Thereby, it may not cap-
ture some potential stable cohesive subgraphs. Similar results
can also be seen in the cohesive subgraph containing J. M.
Cherry [Fig. 6(d)–(f)]. Looking at J. M. Cherry’s homepage
(https://cherrylab.stanford.edu/) and M. Lenzerini’s homepage
(http://www.dis.uniroma1.it/lenzerin/index.html/), we find that
other authors in Fig. 6(f) are J. M. Cherry’s students dur-
ing 2000–2007, thus their cooperation during that period was
dense and frequent. Similarly, in Fig. 6(c), those authors are
M. Lenzerini’s intimate parters during 1999–2016. In a nut-
shell, our model is more effective to identify stable cohesive
subgraphs in temporal networks than the other models.

C. Efficiency Evaluation

Exp-5 (Running Time of Temporal Graph Reduction
Algorithm): In this experiment, we report the running time
of TGRA on all datasets under default parameter setting. As
can be seen in Fig. 7(a), the running time of TGRA on the
Msg, Chess, Facebook, Linux, Enron, and Wiki are less than
2 s. On the larger dataset DBLP, TGRA also only consumes
around 6 s. These results demonstrate that our temporal graph
reduction techniques are very efficient in practice, which is
consistent with our theoretical analysis in Section IV.

Exp-6 (Percentage of Remaining Nodes With Varying
Parameters): Fig. 7(b)–(d) shows the percentage of the remain-
ing nodes after pruning the original graph with varying δ, γ ,
and ρ. TGRA effectively prunes lots of vertices on all datasets.
For example, on Linux, Enron, and DBLP, the amount of the
rest vertices obtained by TGRA algorithm are only 1.16%,
1.77%, and 1.28% of the original graph, respectively, with
default parameter setting. As expected, the size of the reduced
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TABLE IV
AUTHORS COLLABORATE WITH PROF. MAURIZIO LENZERINI (a) AND J. MICHAEL CHERRY (b). THE NUMBER 1-16 DENOTE D. CALVANESE,

G. DE GIACOMO, M. LENZERINI, D. LEMBO, A. POGGI, R. ROSATI, M. RUZZI, D. F. SAVO, M. RODRIGUEZ-MURO, M. SCHROEDER, K. DOLINSKI,
D. BOTSTEIN, S. WENG, S. S. DWIGHT, J. M. CHERRY, AND G. BINKLEY, RESPECTIVELY

(a) (b)

(a) (b) (c) (d) (e)

Fig. 8. Running time of different MSQC search algorithms with varying parameters. (a) Linux (vary δ). (b) Enron (vary δ). (c) DBLP (vary δ). (d) DBLP
(vary γ ). (e) DBLP (vary ρ).

graph decreases with increasing δ, γ , or ρ. This is because
the power of stability-based pruning is enhanced when δ, γ ,
or ρ increases (Definition 8 and Lemma 1). These results
demonstrate that TGRA is powerful for pruning the real-world
graphs.

Exp-7 (Running Time of Quick, BB&SCM-BA, BB&SCM,
and BB&SCM-GR With Varying Parameters): Fig. 8 illus-
trates the running time of different algorithms on Linux, Enron
and DBLP with varying parameters. The results on the other
datasets are consistent. As can be seen, BB&SCM-GR is con-
sistently faster than all the other algorithms under all parameter
settings. Instead, Quick and BB&SCM-BA are inefficient,
which cannot terminate within one day on Linux, Enron, and
DBLP in any parameter settings. Clearly, BB&SCM is also
very efficient under most parameter settings. Moreover, we can
see that the running time of BB&SCM is at least two orders of
magnitude faster than those of Quick and BB&SCM-BA under
most parameter settings. For example, when δ = 10, γ = 0.7,
and ρ = 0.6, BB&SCM takes 695 s to enumerate all maxi-
mal ρ-stable (δ, γ )-quasi-cliques on Linux, while Quick and
BB&SCM-BA do not terminate within one day. These results
suggest that proposed pruning techniques and the greedy ver-
tex selection in Algorithm 5 are very effective to prune the
search space. It is worth noting that although our model
is a bit more complicated than traditional quasi-clique, the

search is more efficient by considering temporal constraints.
As expected, the running time of BB&SCM and BB&SCM-
GR decrease with increasing δ, γ , or ρ. The reasons are as
follows: when δ, γ , or ρ increases, TGRA can prune a large
number of vertices, resulting in a very small search space in
B&B. Moreover, when δ, γ , or ρ increases, the excluding-node
pruning and including-node pruning are enhanced, resulting in
that more unqualified vertices are pruned.

Exp-8 (Effectiveness of Different Pruning Techniques With
Varying Parameters): Fig. 9 reports the results on Linux,
Enron and DBLP with varying parameters. Similar results
can be seen on the other datasets and parameters. As
can be seen, BB&SCM-EX and BB&SCM-IN are faster
than BB&SCM-BA, which indicates our excluding-node
pruning and including-node pruning are effective in prac-
tice. Meanwhile, BB&SCM-EX is consistently faster than
BB&SCM-IN under all parameter settings, which shows our
excluding-node pruning is likely more effective than including-
node pruning. In particular, the running time of BB&SCM-
EX is 1–3 orders of magnitude faster than BB&SCM-IN.
For example, when δ = 12, γ = 0.7, and ρ = 0.6,
BB&SCM-EX takes 14 s to enumerate all maximal ρ-
stable (δ, γ )-quasi-cliques on Enron, while BB&SCM-IN
takes 5738 s. More generally, the running time of BB&SCM-
EX, BB&SCM-IN decrease with increasing δ, γ or ρ. Because
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(a) (b) (c) (d) (e)

Fig. 9. Effectiveness of different pruning techniques with varying parameters. (a) Linux (vary δ). (b) Enron (vary δ). (c) DBLP (vary δ). (d) DBLP (vary
γ ). (e) DBLP (vary ρ).

Fig. 10. Memory overhead of BB&SCM-GR.

(a) (b)

Fig. 11. Scalability (DBLP). (a) TGRA. (b) BB&SCM-GR.

both excluding-node pruning and including-node pruning are
improved when δ, γ , or ρ increases, resulting in that more ver-
tices are pruned. However, for larger DBLP, the two pruning
techniques are still not good enough. Thereby, the experiment
further illustrates that to improve the efficiency, excluding-
node pruning and including-node pruning need to be combined
for solving our problem [see Fig. 8(c)–(e)].

Exp-9 (Memory Overhead of BB&SCM-GR): Fig. 10 shows
the memory overhead of BB&SCM-GR on all datasets with
default parameter values. We can see that the memory over-
head of BB&SCM-GR is higher than the size of the temporal
graph, but typically lower than four times of the size of the
large temporal graph. For example, on DBLP, BB&SCM-GR
consumes 1002-MB memory while the temporal graphs needs
468 MB. These results demonstrate that our BB&SCM-GR
can achieve near linear space complexity.

Exp-10 (Scalability Testing): We choose the largest dataset
DBLP to test the scalability of TGRA and BB&SCM-GR under
default parameter setting. Specifically, we generate four sub-
graphs by randomly selecting 20%–100% vertices or temporal
edges from DBLP. Then, we evaluate the running time of our
algorithms on these subgraphs (Fig. 11). We can see that both
TGRA and BB&SCM-GR scales near linear with respect to
the size of the temporal graph. Similar results can be also

observed in other parameter settings. The results indicate that
our algorithms are scalable.

VII. CONCLUSION AND FUTURE WORK

In this article, we systematically formalized the stable cohe-
sive subgraphs on temporal graphs and present solutions to
extract it. Specifically, we proposed a novel cohesive subgraph
model, called maximal ρ-stable (δ, γ )-quasi-clique, to charac-
terize both the cohesiveness and the stability of a subgraph.
We showed that the problem of mining all maximal ρ-
stable (δ, γ )-quasi-cliques is NP-hard. To efficiently solve the
problem, we first proposed TGRA to significantly reduce the
original temporal graph. Then, on the reduced temporal graph,
a powerful branch and bound enumeration algorithm, named
BB&SCM, with four carefully designed pruning techniques
was devised to efficiently identify all maximal ρ-stable (δ, γ )-
quasi-cliques. Comprehensive experiments on seven real-world
temporal networks demonstrated the efficiency, scalability, and
effectiveness of our approach. There are some interesting
directions for future exploration.

1) Adopting other cohesive subgrph models (e.g., clique, k-
truss) to model the stable cohesive subgraph on temporal
networks.

2) Considering query-biased community search problem
from massive temporal networks.

APPENDIX

Proof of Lemma 1: The lemma can be proved by contra-
diction. Assume that ∃ ρ-stable (δ, γ )-quasi-clique H such
that S ∪ {u} ⊆ H ⊆ U. By Definition 6, we can know
co(MIγ

δ (H)) ≥ ρ||T ||. ∀ T ⊆MIγ
δ (H), we have aT

u (H) ≥
γ (|H| − 1), resulting in aT

u (H) ≥ γ (max{δ, |S|, lb(H, S)} −
1) due to |H| ≥ max{δ, |S|, lb(H, S)}. Thus, T is a can-
didate dense interval of u w.r.t. (GH, S), and then we
can derive co(MCDI(u, H, IS(TH), S)) ≥ co(MIγ

δ (H)). In
a similar way, ∀I ⊆ MCDI(u, H, IS(TH), S), we have
aI

u(U) ≥ aI
u(H) ≥ γ (max{δ, |S|, lb(H, S)}−1). Since lb(U, S)

and lb(H, S) represent the lower bound of ρ-stable (δ, γ )-
quasi-clique in (GU, S) and (GH, S), respectively, we have
lb(H, S) ≥ lb(U, S) due to H ⊆ U. Consequently, aI

u(U) ≥
γ (max{δ, |S|, lb(H, S)} − 1) ≥ γ (max{δ, |S|, lb(U, S)} −
1). Namely, I is a candidate dense interval of u
w.r.t. (GU, S). Therefore, co(MCDI(u, U, IS(TU), S)) ≥
co(MCDI(u, H, IS(TH), S)) ≥ co(MIγ

δ (H)) ≥ ρ||T ||,
which contradicts with co(MCDI(u, U, IS(TU), S)) < ρ ·
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||T ||. Thus, vertex u can be removed from task (GU, S) without
loss of accuracy.

Proof of Lemma 2: Clearly, dt
v(U) decreases by 1

when timestamp t is shared by MCDI(v, U, IS(TU), S)

and TU(u, v), i.e., there are interval [tsi , tei] ∈
MCDI(v, U, IS(TU), S) and [tlj, trj ] ∈ TU(u, v) such
that t ∈ [tsi , tei ] ∩ [tlj , trj ], while dt

v(U) keeps unchanged for
other timestamps. Thus, t falls into interval set Ta when dt

v(U)

decreases by 1. Moreover, by Definition 8, we can know that
the maximal candidate dense intervals of v w.r.t. (GU, S) in
interval set Ta may be shrunk because the degree of v is
reduced in Ta. However, the maximal candidate dense intervals
of v w.r.t. (GU, S) in interval set Tb are not affected since
dt

v(U \ {u}) does not change for any timestamp t in Tb. Thus,
the deletion of u only affects the maximal candidate dense
interval T of v, in which T ∈ Ta. Consequently, when vertex
u is deleted from (GU, S), MCDI(v, U \ {u}, IS(TU\{u}), S) =
Tb ∪MCDI(v, U \ {u}, Ta, S) for any v ∈ Nu(U) holds.

Proof of Lemma 3: When (h− 2/h− 1) < γ ≤ 1. ∀u ∈ H,
we can derive aT

u (H) ≥ γ · (h − 1) > h − 2 by Definition 4.
Moreover, aT

u (H) ≤ h−1. Thus, aT
u (H) = h−1. Consequently,

the de-temporal graph of GH(T) is a complete graph and
D(GH(T)) = 1.

When (h− 2/2(h− 1)) < γ ≤ (h− 2/h− 1). On the one
hand, ∀w ∈ H that has aT

w(H) ≥ γ · (h − 1) > (h− 2/2)

by Definition 4, so dT
w(H) > (h− 2/2) · ||T||. On the other

hand, we assume that D(GH(T)) > 2, i.e., ∃u, v ∈ H
such that NT

u (H) ∩ NT
v (H) = ∅, where NT

u (H) = {w ∈
H|∃(u, w, [ts, te]) ∈ EH(T)}. So, ∀t ∈ T , we have dt

u(H) ≤
h−1−1−dt

v(H),
∑

t∈T dt
u(H) ≤ (h−2) · ||T||−∑

t∈T dt
v(H).

So, dT
u (H) < (h− 2/2) · ||T||, which contradicts with previous

results. Thus, D(GH(T)) ≤ 2.
Proof of Lemma 4: ∀T ∈MIγ

δ (Y), u ∈ S, we have aT
u (Y) ≥

γ (|Y| −1) (Definition 4). aT
u (Y) = aT

u (S)+ aT
u (Y\S) = aT

u (S)+
aT

Y\S(u), that is |S|γ (|Y| − 1)| ≤ ∑
u∈S{aT

u (S)+ aT
Y\S(u)} ≤

AS(U, S)+ ∑|Y\S|
i=1 AS(U, ui), where aT

u (S) ≤ AS(U, u) and
∑

u∈S aT
Y\S(u) = ∑

w∈Y\S aT
w(S) ≤ ∑|Y\S|

i=1 AS(U, ui) due to
T ⊆ TU . Let |Y \ S| = k, we have |S|γ (|S| + k − 1) ≤
AS(U, S)+∑k

i=1 AS(U, ui); thus, |Y| ≤ ub(U, S).
Proof of Lemma 5: Clearly, we know that |Y| ≥ lb1(U, S)

by Lemma 4. On the other hand, ∀T ∈ MIγ
δ (Y) and u ∈

S, we have aT
u (Y) ≥ γ (|Y| − 1) by Definition 4. aT

u (Y) =
((

∑
t∈T dt

u(Y))/||T||) ≤ ([
∑

t∈T(dt
u(S)+ |Y| − |S|)]/||T||) =

aT
u (S)+ |Y| − |S|, thus, γ (|Y| − 1) ≤ aT

u (Y) ≤ aT
u (S)+ |Y| −

|S|. That is, |S|γ (|Y| − 1) ≤ ∑
u∈S aT

u (S) + |S|(|Y| − |S|) ≤
AS(U, S)+|S|(|Y|− |S|) due to T ⊆ TU . Thus, we have |Y| ≥
([|S|2 − γ |S| − AS(U, S)]/[|S|(1− γ )]). So, this lemma holds.

Proof of Lemma 6: The first three conditions are obvious.
For condition (4), there does not exist a ρ-stable (δ, γ )-quasi-
clique that contains set S, which contradicts the fact that
set S must be included in certain ρ-stable (δ, γ )-quasi-clique
in (GU, S).

Proof of Lemma 7: According to Definition 8, all maximal
dense intervals of any ρ-stable (δ, γ )-quasi-clique in (GC, S∪
{v}) fall into I. Thus, ∀ρ-stable (δ, γ )-quasi-clique H of
(GC, S∪{v}), we have co(MIγ

δ (H)) ≤ co(I). co(MIγ
δ (H)) <

ρ · ||T || when co(I) < ρ · ||T ||, i.e., there is no ρ-stable

(δ, γ )-quasi-clique in (GC, S∪{v}) due to Definition 6. On the
other hand, we assume that there is a ρ-stable (δ, γ )-quasi-
clique H such that S ∪ {v, u} ⊆ H ⊆ C. By Definition 8,
we have co(MIγ

δ (H)) ≤ co(I
⊗

MCDI(u, C, IS(TC), S ∪
{v, u})) < ρ · ||T ||, i.e., co(MIγ

δ (H)) < ρ · ||T ||, which
contradicts with Definition 6.
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